Home

Our Mission

Overview of HVAC

Do i qualify?

Do it yourself

Heating Assistance

Contact


Our Mission

Our Mission Goals

Our Mission Initiatives

Heating

Ventilation

Air conditioning

Energy efficiency of HVAC

Air filtration and cleaning

HVAC industry and standards

Head-end power

Fan coil unit

Odor

An odor, or odour, is caused by one or more volatilized chemical compounds that are generally found in low concentrations that humans and animals can perceive by their sense of smell. An odor is also called a "smell" or a "scent", which can refer to either a pleasant or an unpleasant odor.

The perception of odors, or sense of smell, is mediated by the olfactory nerve. The olfactory receptor (OR) cells are neurons present in the olfactory epithelium, which is a small patch of tissue at the back of the nasal cavity. There are millions of olfactory receptor neurons that act as sensory signaling cells. Each neuron has cilia in direct contact with the air. Odorous molecules bind to receptor proteins extending from cilia and act as a chemical stimulus, initiating electric signals that travel along the olfactory nerve's axons to the brain.

Odor sensation usually depends on the concentration (number of molecules) available to the olfactory receptors. A single odorant is usually recognized by many receptors. Different odorants are recognized by combinations of receptors. The patterns of neuron signals help to identify the smell. The olfactory system does not interpret a single compound, but instead the whole odorous mix. This does not correspond to the concentration or intensity of any single constituent.

For most untrained people, the process of smelling gives little information concerning the specific ingredients of an odor. Their smell perception primarily offers information related to the emotional impact. Experienced people, however, such as flavorists and perfumers, can pick out individual chemicals in complex mixtures through smell alone.

Habituation affects the ability to distinguish odors after continuous exposure. The sensitivity and ability to discriminate odors diminishes with exposure, and the brain tends to ignore continuous stimulus and focus on differences and changes in a particular sensation. When odorants are mixed, a habitual odorant is blocked. This depends on the strength of the odorants in the mixture, which can change the perception and processing of an odor. This process helps classify similar odors as well as adjust sensitivity to differences in complex stimuli.

Gordon Shepherd proposed that the retro-nasal route of olfaction (odorants introduced to the olfactory mucosa through the oral cavity often as food) was partially responsible for the development of human olfactory acuity. He suggested the evolutionary pressure of diversification of food sources and increased complexity of food preparation presented humans with a broader range of odorants, ultimately leading to a "richer repertoire of smells". Animals such as dogs show a greater sensitivity to odors than humans, especially in studies using short-chain compounds. Higher cognitive brain mechanisms and more olfactory brain regions enable humans to discriminate odors better than other mammals despite fewer olfactory receptor genes.

Odor concentration is an odor's pervasiveness. To measure odor sensation, an odor is diluted to a detection or recognition threshold. The detection threshold is the concentration of an odor in air when 50% of a population can distinguish between the odorous sample and an odor-free reference sample. The recognition odor threshold is usually a factor of 2 to 5 times higher than the detection threshold.

When measuring odor, there is a difference between emission and immission measurements. Emission measurement can be taken by olfactometry using an olfactometer to dilute the odor sample. Olfactometry is rarely used for immission measurement because of low odor concentrations involved. The same measuring principles are used, but the judgment of the air-assay happens without diluting the samples.

Most commonly, a set of standard descriptors is used, which may range from "fragrant" to "sewer odor". Although the method is fairly simplistic, it is important for the FIDOL factors to be understood by the person rating the smell. This method is most commonly used to define the character of an odor which can then be compared to other odors. It is common for olfactometry laboratories to report character as an additional factor post sample-analysis.

In many countries odor modeling is used to determine the extent of an impact from an odor source. These are a function of modeled concentration, averaging time (over what time period the model steps are run over, typically hourly), and a percentile. Percentiles refer to a statistical representation of how many hours per year the concentration C may be exceeded based on the averaging period.

The human sense of smell is a primary factor in the sensation of comfort. Olfaction as a sensory system brings awareness of the presence of airborne chemicals. Some inhaled chemicals are volatile compounds that act as a stimulus, triggering unwanted reactions such as nose, eye, and throat irritation. Perception of odor and of irritation is unique to each person, and varies because of physical conditions or memory of past exposures to similar chemicals. A person's specific threshold, before an odor becomes a nuisance, depends also on the frequency, concentration, and duration of an odor.

Odor molecules transmit messages to the limbic system, the area of the brain that governs emotional responses. Some believe that these messages have the power to alter moods, evoke distant memories, raise their spirits, and boost self-confidence. This belief has led to the concept of "aromatherapy" wherein fragrances are claimed to cure a wide range of psychological and physical problems. Aromatherapy claims that fragrances can positively affect sleep, stress, alertness, social interaction, and general feelings of well-being. However, the evidence for the effectiveness of aromatherapy consists mostly of anecdotes and lacks controlled scientific studies to back up its claims.